- International Vienna Motor Symposium
- Prof. Bernhard Geringer
- Research Institute for Automotive Engineering and Vehicle Engines Stuttgart
- Tobias Stoll
- Frederik Zohm
- MAN Trucks & Bus
- Ego Christ
- Mosolf
- Nils-Erik Meyer
- Akkodis Germany
- Oliver Hrazadera
- Akkodis Austria
- Dorothea Liebig
- Shell Global Solutions
- Hydrogen fuel cell
- Markus Heyn
- Robert Bosch
- Bosch Mobility
- Rolf Dobereiner
- AVL List
- Christian Barba
- Daimler Truck
- Lei Liu
- Cummins
- Yuan Shen
- Zhejiang Geely Holding
- Anreas Wimmer
- Graz University of Technology
- Stefan Loser
- Christ Bitsis
- Southwest Research Institute
- Prof Bernhard Geringer
Combustion Engine Ban For CVs Proves Harder Than Expected
- By MT Bureau
- September 30, 2025
The road to decarbonisation for the commercial vehicle sector is proving to be a complex and challenging journey, with experts highlighting that a straightforward ‘combustion engine ban’ for lorries and other commercial vehicles is far more difficult to implement than for passenger cars.
Following the European Union’s strict CO2 fleet regulations for passenger vehicles, which effectively introduce a ban on combustion engines, stringent greenhouse gas limits are also being rolled out for commercial vehicles.
Experts at the International Vienna Motor Symposium stressed that the industry is racing to develop a wide array of solutions to match the huge diversity of vehicles on the road – from long-distance trucks and small delivery vans to construction and agricultural machinery.
Prof. Bernhard Geringer, Chairman of the International Vienna Motor Symposium, noted that the entire commercial vehicle industry is working on a wide range of solutions needed to match the diversity of vehicle types on the road in view of the developments expected in 2026.
The legislative pressure is intense. Tobias Stoll, a project manager at the Research Institute for Automotive Engineering and Vehicle Engines Stuttgart (FKFS), pointed out that EU legislation stipulates ‘a 45 percent reduction in CO2 emissions by 2030 compared to 2019,’ with manufacturers facing heavy financial penalties for non-compliance.
This has set the industry's course, with Frederik Zohm (pictured above), Chief Technology Officer at MAN Trucks & Bus, expecting ‘major transformations in the commercial vehicle sector by 2030.’
Egon Christ, Chief Strategist at transport and logistics service provider Mosolf, commented: ‘The course has been set.’
However, the existing transport model, especially for long-haul journeys, is heavily reliant on fossil fuels. A typical diesel lorry has a service life of 1.5 million kilometres, often covering up to 200,000 kilometres annually.
Ten years ago, EU forecasts anticipated a dominant role for hydrogen and a minor one for battery-electric trucks. The reality has turned out to be ‘exactly the opposite,’ according to Nils-Erik Meyer, a division manager at Akkodis Germany.
Today, there are only around 10 fuel-cell truck models in the EU, compared to over 40 battery-electric models.
While battery-electric vehicles are currently the most technologically advanced, their widespread use hinges on a massive overhaul of charging infrastructure.
Oliver Hrazdera, site manager at Akkodis Austria, calculated: “For trucks with an electric range of 500 kilometres, the EU needs 2,000 charging points with 650 or 1,000 kilowatts of charging power.”
Batteries, payload and hydrogen’s setbacks
Freight companies prioritise fast turnarounds, which necessitates rapid charging. Dorothea Liebig, a manager at Shell Global Solutions Germany, explained that the maximum charging capacity for trucks ‘is up to eight times higher than for cars.’ She also highlighted the alternative of battery swapping, particularly prevalent in China, where it is ‘fully automated and takes just seven minutes’ at the over 1,200 existing battery replacement stations for trucks.
For many journeys, electric trucks are already viable. Meyer from Akkodis calculated that with a mandatory driver break and recharging, a truck could cover ‘around 630 kilometres are possible in one shift. This covers 90 percent of all journeys.’
However, a key disadvantage of battery-electric lorries is the impact on payload, which is reduced by ‘three to six tonnes for the drive system, mainly due to the batteries,’ according to Meyer. By contrast, hydrogen fuel cells only reduce the payload by one tonne.
Despite this advantage, enthusiasm for fuel cells has cooled in Europe. Markus Heyn, Managing Director of Robert Bosch and Chairman of Bosch Mobility, reported that in Europe and the US, a major hurdle has been the substantial cooling requirements for fuel cells, which need ‘two to two and a half times more cooling surface area than diesel trucks,’.
According to Rolf Dobereiner, product line manager at AVL List. This increased requirement consumes up to 40 kilowatts, reducing driving performance and creating challenges for achieving the high-power outputs needed for heavy-duty haulage.
An unexpected dark horse has emerged: the hydrogen combustion engine. This technology offers compelling benefits, as it doesn't require the costly, high-purity hydrogen needed for fuel cells.
Christian Barba, Senior Manager at Daimler Truck, noted that it saves costs ‘as 80 percent of the parts of a diesel engine can be reused.’
Moreover, Anton Arnberger, Senior Product Manager at AVL List, reported that it ‘is the only zero-emission technology that does not require the use of rare earths.’
The hydrogen engine ‘could achieve the torque and power of a gas or diesel engine,’ said Lei Liu, a manager at Cummins in Beijing. Cummins is testing these vehicles in India, where they are seen as a main pillar for transport decarbonisation, given the lack of a comprehensive power grid required for electric trucks.
Developers are also looking at alternatives to gaseous hydrogen. The trend in Europe is moving towards liquid hydrogen, which allows for longer ranges and is cheaper to store.
Furthermore, Yuan Shen, Chief Developer at Zhejiang Geely Holding in China, proposed methanol as ‘the best carrier of hydrogen,’ as it is a liquid fuel that is easy and safer to store and transport.
Shipping, special vehicles and hybridisation
Decarbonisation is equally challenging on the high seas. Andreas Wimmer, a professor at Graz University of Technology, reported that engines for the 100,000 ocean-going vessels in service today have a life span of over 25 years and cost hundreds of millions of euros.
By 2050, these giants must also be CO2-free. While the combustion engine will remain, fossil heavy fuel oil must be replaced by ammonia (considered an ‘up-and-comer’), methanol or limited-quantity biofuel.
The special vehicle sector – such as construction and agricultural machinery – presents one of the toughest challenges. Stefan Loser, department head at MAN Truck & Bus, noted that a forage harvester would need ‘36 tonnes of batteries to run purely on electricity,’ which is impractical. For such machines, which are used intensively for short periods, hydrogen fuel cells or combustion engines running on synthetic fuels will be essential.
Finally, in the USA, where the decarbonisation of transport is ‘less aggressive than in Europe,’ according to Chris Bitsis, head of development at the Southwest Research Institute, hybridisation (the combination of combustion engines and electric drives) is seen as a key strategy to maintain everyday usability while significantly reducing consumption and emissions.
Summing up the current situation, Prof. Bernhard Geringer concluded that battery-electric drives in commercial vehicles are currently only realistic for distances of up to 500 km and with sufficient fast-charging options. He stressed that the special vehicle sector is particularly difficult, which is where ‘hydrogen fuel cell drives or combustion engines with synthetic fuels come into play.’
Multimatic Installs First VI-grade HyperDock System In North America
- By MT Bureau
- February 20, 2026
VI-grade has announced the installation of its HyperDock cockpit at Multimatic’s Vehicle Dynamics Centre in Novi, Michigan. This deployment marks the first instance of HyperDock technology in North America. The system upgrades an existing DiM250 driving simulator, installed in 2020, into a platform capable of simultaneous vehicle dynamics and NVH (Noise, Vibration, and Harshness) development.
The HyperDock consists of a carbon-fibre cockpit designed to increase stiffness and reduce inertia. By removing the traditional top disk in favour of a direct actuator interface and integrated vibro-acoustic feedback, the system allows engineers to assess ride, handling and acoustics within a single environment.
The upgrade introduces ‘full-spectrum’ simulation, which bridges the gap between high-frequency vibration testing and low-frequency motion cues.
- Construction: Lightweight carbon-fibre frame.
- Interface: Direct actuator connection to minimise signal delay and mechanical loss.
- Feedback: Integrated tactile and audio systems for vibro-acoustic realism.
- Application: Simultaneous tuning of vehicle handling and interior cabin noise.
Peter Gibbons, Technical Director – Vehicle Dynamics, Multimatic, said, “After evaluating the VI-grade HyperDock Full Spectrum Simulator cockpit at the SimCenter Udine over a year ago, Multimatic quickly realized that it would provide a significant step forward in the fidelity of all DiM applications, from road car ride tuning to race car limit handling. The overwhelmingly positive responses from Murray White, Technical Director of Vehicle Development at Multimatic, and Dirk Müller, professional race car driver, affirmed Multimatic’s decision to upgrade to HyperDock. The added immersion, superior tactile feedback, and audio advancements have moved the goalposts well beyond our expectations. Multimatic looks forward to continuing to leverage the impressive capabilities of HyperDock over the coming years.”
Alessio Lombardi, Global Sales Director – Simulation, VI-grade, added, “With the addition of HyperDock, Multimatic now benefits from full-spectrum simulation capability, expanding the scope of development activities that can be performed on an already well-established simulator platform. This installation represents an important milestone for VI-grade, as it brings HyperDock technology to North America for the first time.”
- ADAS 2026 Show
- Autonomous
- Driving
- Developments
- Magna
- Mobileye
- Renault
- Ampere
- Mobileye
- Tata Motors
- ARAI
- Aayera
- demo
- live
- conference
- inauguration
- automotive
ADAS 2026 Show Looks At Autonomous Driving Developments
- By Bhushan Mhapralkar
- February 20, 2026
Postponed from December 2025 to February 2026, the ADAS Show 2026 by Aayera was a combination of stalls where diverse players from the field of ADAS or autonomous driving highlighted their latest developments. There were live demo sessions that saw the use of passenger vehicles, trucks and dummies to highlight the technological prowess in the field.
Held at ARAI’s newest testing and certification facility for ADAS and other modern automotive technologies at Takwe (Pune), the show saw experts speak about the autonomous future in panel discussions, presentations etc. Live demos highlighted progress on the computing and vision front; on the software front, underlining certain zest.
In his inaugural address, Dr Reji Mathai, Director, ARAI, spoke about the motive behind setting up an ADAS testing facility at Takwe. Observing that tracks never give returns to draw attention to the decision of setting up an ADAS testing track at Takwe (the newest yet by ARAI), Dr Mathai informed that ARAI participates at the UN level in regulation forming.
Dr Mathai; Elie Luskin, Vice President – India and China, Mobil Eye, and Nina Roeck, Vice President – Software Engineering (Drive & Comfort), Ampere (Renault Group), were united in their expression about India’s unique traffic and driving conditions. The trio stressed on localisation of ADAS system parts such as sensors; on local engineering and development, and on local testing and validation.
“In India, the conditions are different and the effort therefore is to focus on perception, alerts and interventions that consider the local driving condition,” said Roeck.
Asserting that India’s expanding auto market has disproportionately low ADAS. Luskin explained, “ADAS would become mainstream as India’s GDP per capita grows.
Apurbo Kirty, Head – Electrical & Electronics, ERC, Tata Motors, focused on advanced driver assistance in CVs in his address. He referred to road challenges in India, road accident statistics and the challenges for ADAS implementation in terms of SAE autonomy levels, regulations like GSR 834 and how ADAS is a necessity rather than just a tech upgrade.
Touching on the complexity of landscape of Indian road conditions, Abijit Sengupta, Head of Business – SAE and India, HERE Technologies, spoke about vehicle safety trends such as connected vehicles, autonomous, shared services and electrification.
Changan And CATL Launch Mass-Production Sodium-Ion Battery Vehicle
- By MT Bureau
- February 19, 2026
Changan Automobile and CATL have unveiled the first mass-production passenger vehicle equipped with sodium-ion batteries. The vehicle, showcased at the 'Changan SDA Intelligence Milestone Release', is scheduled for market release by mid-2026. CATL, acting as the strategic partner for the project, will supply its Naxtra sodium-ion batteries across Changan’s brands, including Avatr, Deepal, Qiyuan and UNI. The partnership introduces a dual-chemistry approach to the market, utilising sodium-ion alongside lithium-ion technologies.
CATL's Naxtra battery reaches an energy density of 175 Wh/kg. Utilising a Cell-to-Pack system and a battery management system (BMS), the technology provides a range exceeding 400 km. Future iterations are projected to reach 500–600 km for battery electric vehicles (BEVs) and 300–400 km for hybrids.
The technology is designed for operation in cold climates. At –30deg Celsius, the battery delivers triple the discharge power of lithium iron phosphate (LFP) alternatives. It maintains 90 percent capacity retention at –40deg Celsius and continues to function at –50deg Celsius. Safety testing, including drilling and crushing, resulted in no smoke or fire.
The global sodium-ion battery market is forecast to grow from USD 1.39 billion in 2025 to USD 6.83 billion by 2034. To support adoption, CATL plans to establish over 3,000 Choco-Swap battery swap stations across 140 cities in China by the end of 2026, with a focus on northern regions.
The launch follows a decade of research. Since 2016, CATL has invested nearly 10 billion RMB (USD 1.45 billion) into sodium-ion technology, developing approximately 300,000 test cells. The project was supported by a dedicated team of 300 personnel to ensure scalability and performance.
Gao Huan, CTO of CATL's China E-car Business, said, "The arrival of sodium-ion technology marks the beginning of a dual-chemistry era. Changan's vision shows both its responsibility for energy security and its strategic foresight. Much as it embraced electric vehicles years ago, Changan is once again taking the lead with its sodium-ion roadmap. At CATL, we value the opportunity to work alongside such an industry leader and fully support its strategy, combining our expertise to bring safe, reliable and high-performance sodium-ion technology to market."
drivebuddyAI Demonstrates Scalable ADAS Platform At India’s First ADAS Test Track
- By MT Bureau
- February 18, 2026
Following its international unveiling at CES 2026, drivebuddyAI, a leading innovator in AI-powered Advanced Driver Assistance Systems (ADAS) and Driver Monitoring Systems (DMS), recently demonstrated its technology at the ARAI ADAS Test City. The company presented its range of vision-based Advanced Driver Assistance and Driver Monitoring Systems, focusing on their reliability in the varied and challenging conditions typical of Indian roads.
Live demonstrations were conducted using a heavy commercial vehicle to showcase the platform's versatility in meeting various compliance standards. A single, integrated hardware and software setup, utilising a fused network of cameras for 360-degree perception, executed multiple test scenarios simultaneously. These included a driver monitoring system that detects drowsiness, distraction and seatbelt usage in line with both Indian and European regulations. Further tests illustrated the vehicle's ability to warn of pedestrians moving into its path, identify potential collisions with cyclists in blind spots and issue forward collision warnings by combining radar and camera data.
Beyond merely fulfilling test requirements, the demonstrations highlighted practical applications that extend into everyday driving situations. This focus on real-world functionality is backed by extensive validation, with the company's systems having analysed nearly four billion kilometres of driving data. This has reportedly led to significant safety improvements, including a marked decrease in incidents caused by driver fatigue and a substantial reduction in overall fleet risks.
Currently validated for commercial vehicles against India's AIS-184 standard and Europe's stringent General Safety Regulation and Euro NCAP protocols for 2026, the technology is also adaptable for passenger cars. This scalability offers automotive manufacturers and their suppliers a pathway to not only meet but surpass upcoming global safety mandates. By refining its AI through extensive fleet operations over billions of kilometres before adapting it for original equipment manufacturer compliance, drivebuddyAI aims to deliver a mature, rigorously tested product that ensures an enhanced user experience.
Nisarg Pandya, CEO and Founder, drivebuddyAI, said, “ADAS Test City from ARAI is a great initiative, and we value participating in a format where we can showcase live demonstrations to a large audience together on the vehicle. This time, the turnout was significant and provided a strong opportunity to establish drivebuddyAI as one of the key players in the upcoming OEM compliance requirements. The engagement and response we received were phenomenal, reinforcing both the market need and the industry’s confidence in our solutions. The upcoming ADAS-compliant vehicles must have technology that works in Indian scenarios to achieve meaningful safety improvements and reduce fatalities.”

Comments (0)
ADD COMMENT